Joint Probability Distribution Function
\[\mathbf{P}(a\leq X\leq b,c\leq Y\leq d)=\int_{c}^{d}\int_{a}^{b}f_{X,Y}(x,y)\,\mathrm{d}x\,\mathrm{d}y\]
Marginal Probability Density Function
\[f_X(x)=\int f_{X,Y}(x,y)\,\mathrm{d}y\]
\[f_Y(y)=\int f_{X,Y}(x,y)\,\mathrm{d}x\]
Joint Cumulative Distribution Function
\[F_{X,Y}(x,y)=\mathbf{P}(X\leq x,Y\leq y)=\int_{-\infty}^{y}\int_{-\infty}^{x}f_{X,Y}(s,t)\,\mathrm{d}s\,\mathrm{d}t\]
\[f_{X,Y}(x,y)=\dfrac{\partial^2F_{X,Y}(x,y)}{\partial x\,\partial y}\]