Continuous \(\Theta\), Discrete \(K\)

coin with bias \(\Theta\); prior \(f_{\Theta}(\cdot)\)

\[f_{\Theta\lvert K}=\dfrac{f_{\Theta}(\theta)\,p_{K\lvert\Theta}(k\lvert\theta)}{p_K(k)}\] \[p_K(k)=\int f_{\Theta}(\theta')\,p_{K\lvert\Theta}(k\lvert\theta')\,\mathrm{d}\theta'\]

The Beta Distribution

\[\theta^k(1-\theta)^{n-k}\]

MAP Estimate

LMS Estimate